Roll No.

97664

BCA 1st Semester (New) Examination – November, 2017

LOGICAL ORGANIZATION OF COMPUTER -1

Paper: BCA-104

Time: Three Hours]

[Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Attempt four questions by selecting one question from each Unit.

All questions carry equal marks.

1. (2) What is a multiplexer? Outline its relevance.

 $2 \times 8 = 16$

- (W) What is Unicode? State its relevance.
- What are Demultiplexers ? State their importance.
- (d) What are digital signals? Explain.
- (e) What is the smallest and largest integer number represented in a 32-bit computer?

- (f) What are Venn Diagrams?
- (g) Prove x.y'+y.z'+z.x'=x'.y+y'.z+z'.x, algebraically.
- (M) What are encoders?

UNIT - I

- 2. (a) Which number system is followed in digital computers and why?
 - (b) Find out the values of X, Y and Z in the following:

$$(108.750)_{10} = (X)_2 = (Y)_8 = (Z)_{16}$$

- 3. Explain the following:
 - (a) Error detection and correction codes 8
 - (b) Character Codes 8

UNIT - II

- 4. (a) What are De-Morgan's Law? Illustrate. 6
 - (b) Kush wants to purchase a bicycle. The bicycle must have brakes. He will buy a bicycle that has either a hand-brake or a foot-brake. No bicycle has both types. Write the Boolean equation for buying a bicycle. Implement the same using basic gates.

97664-7050-(P-4)(Q-9)(17) (2)

3370709

5.	Exp	lain the following:					
	(a)	Duality principle 6					
	Der	Canonical forms of Boolean Functions 5					
	(c)	Boolean Axioms 5					
UNIT – III							
6	(2)	What are Universal Gates? Why these are named					
		so ? Justify.					
	907	What do you mean by multilevel NAND and					
		NOR circuits? Illustrate. 5					
	10	What are AND-OR-INVERT and OR-AND-					
		INVERT implementation? Explain. 5					
7.	(a)	What is combinational circuit? What are its					
	•	characteristics ? Detail out the procedure for					
		design of combinational circuit. 8					
	(b)	Design a combinational circuit that receives 2-bit					
		binary input and produces its square at the					
		output. 8					
97664-7050-(P-4)(Q-9)(17) (3) P. T. O.							

UNIT - IV

1	1			US THE ST			
8	(a)	What is full-subtractor? Design a full-adder and					
		implement the same us	sing gates.				
	8	What is a BCD to s	seven-segment	Decoder			
		Design and implement	it.	8			
9.	Exp	plain the following:					
	(a)	Code Converters		8			
	(b)	Comparators		8			
	11						

(1100110-1) (154.64) 750

97664-7050-(P-4)(17) (4

2500

163

616 48 38 40

7 600

716 X5