67008

MCA 1st Semester (Current) CBCS Scheme w.e.f. Dec - 2016 Examination – November, 2017 DIGITAL DESIGN

Paper: MCA-103(C)

Time: Three Hours]

[Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all by selecting one question from each Unit and Q. No. 1 is compulsory.

- 1. (a) What are Self-Complementing Codes? $8 \times 2 = 16$
 - (b) Why 2's complement is preferred in computers?
 - (c) What are PLAs?
 - (d) Differentiate between Edge-triggered and Leveltriggered flip-flops.
 - (e) What are race-conditions?
 - (f) What is a Johnson-Counter?

P. T. O.

- (g) Differentiate between NMOS and PMOS logic families.
- (h) What is a Buffer Register?

UNIT - I

- 2. (a) What are Error-Detecting and Error-Correcting Codes? Illustrate their usefulness with suitable examples.
 - (b) Perform $(-25)_{10} \times (-15)_{10}$ using Booth Coding representation and justify the result.
 - (c) Perform the following binary arithmetic operations using 2's complement representation:
 - (i) $(35)_{10} + (-12)_{10}$

(ii)
$$(-15)_{10} + (-32)_{10}$$
 5

- 3. (a) What are Cyclic codes? How are these useful?

 Illustrate. 6
 - (b) What is the minimum and maximum integer and floating-point number stored in a 64-bit register assuming 1 bit as a sign-bit, 16 bits for exponent and rest of the bits for significant? Provide its complete layout indicating overflow and underflow regions.
 - (c) Perform the following:
 - (i) Convert (128)₁₀ into Excess-3 code
 - (ii) Convert (11101011101)₂ to Gray code.

UNIT - II

- 4 (a) What are Universal Gates? How Universal gates are realized into basic gates? Illustrate.
 - (b) What is Boolean Expression ? Simplify the 10 following Boolean expression:

 $F(a, b, c, d) = \Sigma m (1, 3, 4, 5, 9, 10, 11) + \Sigma d (6,8)$

in canonical SOPs and POSs and implement one of these using basic gates.

- 5. (a) What do you mean by the following terms? 6
 - Noise Margin (i)
 - (ii) Propagation delay
 - (iii) Fan-in and Fan-out

Illustrate their relevance.

(b) What is a Logic family? What criteria make one logic family to differ from another? Differentiate between TTL and CMOS Logic families. 10

UNIT - III

- 6. (a) What is Magnitude Comparator? Design 2-bit Magnitude Comparator.
 - (b) What is combinational circuit? Design combinational circuit that receives 4-bit binary number as input and produces its 2's complement 8 at its output.

- 7. Illustrate the purpose of the following and implement:
 - (a) Code Converter

8

(b) Master-Slave Flip-Flop

8

UNIT - IV

- 8. (a) What do you mean by controlled shift registers?Design a 3-bit controlled shift register and illustrate its working.
 - (b) What is a BCD Counter? How will you design it? Illustrate.
 8
- (a) What is dynamic RAM? How is it different from Static RAM? Under what circumstances each of these preferred and why? Explain.
 - (b) What is a ripple counter? How is it different from synchronous counter? Design a ripple counter and discuss its working.
 8